Part Number Hot Search : 
A3988 L2101 08783 3DD1300 KA3525A 80000 LM190 2SK1519
Product Description
Full Text Search
 

To Download XRT4000CV Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 XRT4000
Universal Multiprotocol Serial Interface
November 1998-2
FEATURES * Software-configurable multiprotocol serial interface supporting: V.35, V.36, EIA-530 (A), RS232 (V.28), X.21, RS449 One chip fully integrated solution (Internal termination) Contains 8 receivers and 8 transmitters for full DTE and DCE support Glitch filters on the control signals (Optional) +5V, +12V, -6V power supplies required Full support of loopbacks, data & clock inversion, and echoed clock in DTE and DCE modes Full support of most popular types of HDLC controllers (single, double, and triple clocks supported) * * * * * Internal oscillator for standalone DTE loopback testing Control signals can be registered and nonregistered Control signals can be tri-stated for bus-based designs "Fail Safe" operation supported ESD Protection Over + 2kV Range
* * * * * *
APPLICATIONS * * * Data Service Units (DSU) Routers Access Multiplexers
GENERAL DESCRIPTION The XRT4000 is a fully integrated multiprotocol serial interface. It is a universal device because it supports all of the popular serial physical interfaces such as V.35, V.36, EIA-530 (A), RS232 (V.28), X.21 and RS449. Furthermore it can easily be interfaced with most common types of HDLC controllers. This device contains 8 receivers and 8 transmitters. It is a complete solution containing all of the required source and load terminations in one 100 pin TQFP package. XRT4000 can be configured to operate in one of the seven interfaces in either DTE and DCE modes of operation and power down mode. It fully supports echoed clock as well as clock and data inversion. An elaborate set of loopbacks are supported in DTE and DCE modes of operation. This eliminates the need for external circuitry for loopback implementation. The control signals such as RI, RL, DCD, DTR, DSR are protected against glitches by internal filters. These filters can be disabled. XRT4000 has an internal oscillator which is used to create a clock signal needed to conduct standalone diagnostics of DTE equipment.
ORDER INFORMATION
Part No. XRT4000CV Package 100 Pin TQFP Operating Temperature Range 0C to +70C
Rev. 1.00
EXAR Corporation, 48720 Kato Road, Fremont, CA 95538 (510) 668-7000 FAX (510) 668-7017
XRT4000
Figure 1. XRT4000 Functional Block Diagram
Rev. 1.00
-2-
XRT4000
Figure 2. XRT4000 RTMOD1 Block
Figure 3. XRT4000 RTMOD2 Block
Rev. 1.00
-3-
XRT4000
Figure 4. XRT4000 RTMOD3 Block
Figure 5. XRT4000 Control Block
Note: Signals without pin numbers having names identical to those with pin numbers are CMOS level-shifted versions of TTL-compatible input signals.
Rev. 1.00
-4-
XRT4000
PIN CONFIGURATION
CM_TR3
CM_TX2
RX1A
RX2A
RX1D
RX1B
RX2B
TR3B
TR3A
TX3D
TX2D
TX2B
VDD
VDD GND M0 M1 M2 EN_FLTR EN_TERM LATCH* VSS VSS GND CLKFS TX4D VDD TX4B TX4A TX5A TX5B GND TX5D TX8D LP* TX8O VSS 30 20 10
90
80
TX2A
GND
VDD
TX1A
VDD
VSS
CM_TX1
RX2D
RX3D
TX1B
GND
VSS
TX1D GND VSS VDD VDD 70 GND VSS DTINV* CKINV* EN_OSC*
100-Pin TQFP XRT4000
60
2CK/3CK* REG_CLK VR VPP NC NC NC NC VPP VDD E_232H* VSS N/C
40
VDD
50
GND N/C
VSS
VSS
VDD
VDD
RX8D
RX5D
RX4D
RX5B
RX5A
RX4A
RX4B
TR7
TR6A
TR6B
GND
EC*
DCE/DTE*
RX67D
TX76D
Rev. 1.00
-5-
SLEW_CNTL
EN_OUT*
GND
RX8I
REG
N/C
XRT4000
PIN DESCRIPTION
Pin # 1 2 3 4 5 6 7 8 Symbol VDD GND M0 M1 M2 EN_FLTR EN_TERM LATCH* DTE Mode DCE Mode Type Function Digital VDD for Receiver 1 - Connect to +5V Digital GND for Receiver 1 Mode Control - Mode Select Input 0; Internal 20K pull-up Mode Control - Mode Select Input 1; Internal 20K pull-up Mode Control - Mode Select Input 2; Internal 20K pull-up Enable Glitch Filter on Receiver 4, 5, 6, 7, 8 inputs. Internal 20K pull-down Enable input termination for Receiver 1, 2, 3 in V.11 Mode. Internal 20K pull-down Mode Control Input Latch Enable - Logic 0: Changes on M0, 1, 2, EN_FLTR, and EN_TERM pins cause mode changes (input latches in transparent state). Logic 1: Changes on these input pins do not cause mode changes (input latches in latched state). Internal 20K pulldown Digital VSS for Transmitter 4, 5, 6. Connect to -6V Analog VSS for bias generation Connect to -6V Digital GND for Transmitter 7, 8 Internal Clock Generated - 500kHz Transmitter 4 - Digital Data Input from equipment Digital VDD for Transmitter 4, 5, 6; Connect to +5V Transmitter 4 - Positive Data Differential Output to line Transmitter 4 - Negative Data Differential Output to line Transmitter 5 - Negative Data Differential Output to line Transmitter 5 - Positive Data Differential Output to line Digital GND for Transmitter 4, 5, 6 Transmitter 5 - Digital Data Input from equipment Transmitter 8 - Digital Data Input from equipment Loopback Enable - Active low; Logic 0: Loopback enabled. Logic 1: Loopback disabled. Internal 20K pull-up Transmitter 8 - Single Ended Data Output to line Digital VSS for Transmitter 7, 8; Connect to -6V Digital VDD for Transmitter 7, 8; Connect to +5V Output Enable for Receiver 5, 8; Internal 20K pull-down Register Control - Logic 1: TX5D, TX8D signal values will be latched on the positive edge of REG_CLK, Logic 0: The Register flip-flop is bypassed therefore REG_CLK has no effect on these signals. Internal 20K pull-down Analog VSS for Receiver 4, 5, 6; Connect to -6V Analog VDD for Receiver 4, 5, 6; Connect to +5V Analog VDD for Receiver 7, 8; Connect to +5V Receiver 8 - Digital Data Output to equipment Analog GND for Receiver 7, 8 Receiver 8 - Single Ended Data Input from line Analog VSS for Receiver 7, 8; Connect to -6V
I I I I I I
9 10 11 12 13 14 15 16 17 18 19 20 21 22
VSS VSS GND CLKFS TX4D VDD TX4B TX4A TX5A TX5B GND TX5D TX8D LP*
D_RTS RTSB RTSA DTRA DTRB D_DTR D_RL
D_CTS CTSB CTSA DSRA DSRB D_DSR D_RI
O I O O O O I I I
23 24 25 26 27
TX8O VSS VDD EN_OUT* REG
RLA
RIA
O
I I
28 29 30 31 32 33 34
VSS VDD VDD RX8D GND RX8I VSS
D_RI RIA
D_RL RLA
O I
Note: An asterisk (*) following a pin symbol indicates that the pin is active low. Names begining with D_ are digital signals. Names ending with B and A are the positive and negative polarities of differential signals respectively.
Rev. 1.00
-6-
XRT4000
PIN DESCRIPTION (CONT'D)
Pin # 35 36 37 Symbol TR7 TX76D TR6A DTE Mode LLA D_LL DCDA DCE Mode LLA D_DCD DCDA Type I/O I I/O Function DTE Mode - Transmitter 7 - Single Ended Data Output to line DCE Mode - Receiver 7 - Single Ended Data Input from line Digital Input - Refer to Mode Control Table DTE Mode - Receiver 6 - Negative Data Differential Input from line DCE Mode - Transmitter 6 - Negative Data Differential Output to line DTE Mode - Receiver 6 - Positive Data Differential Input from line DCE Mode - Transmitter 6 - Positive Data Differential Output to line DCE/DTE Select - Selects operating mode. Logic 0: DTE Mode. Logic 1: DCE Mode. Internal 20K pull-up Digital Output - Refer to Mode Control Table Receiver 5 - Digital Data Output to equipment Enable Clock Mode - Active Low, Logic 0: Echoed Mode. Logic 1: Normal Mode. Internal 20K pull-up Receiver 5 - Positive Data Differential Input from line Receiver 5 - Negative Data Differential Input from line Receiver 4 - Negative Data Differential Input from line Receiver 4 - Positive Data Differential Input from line Analog Output - Resistor connected between this pin and Ground controls transmitter output pulse rise and fall time in V.10 or V.28 mode as specified in Figures 15 and 16 respectively. Receiver 4 - Digital Data Output to equipment Digital GND for Receiver 4, 5, 6
38
TR6B
DCDB
DCDB
I/O
39 40 41 42 43 44 45 46 47
DCE/DTE* RX67D RX5D EC* RX5B RX5A RX4A RX4B SLEW_ CNTL
LOW D_DCD D_DSR
HIGH D_LL D_DTR
I O O I I I I I O
DSRB DSRA CTSA CTSB
DTRB DTRA RTSA RTSB
48 49 50 51 52 53 54 55
RX4D GND NC NC GND NC VSS E_232H*
D_CTS
D_RTS
O
Analog GND for bias generator. Analog Substrate - Connect to -6V High Speed RS-232 Enable - Logic 0: Enables high speed RS-232 mode (drives 3K in parallel with 1000pF at 256KHz). Internal 20K pull-up Analog VDD for bias generation circuit; Connect to +5V VPP - Connect to +12V supply
I
56 57 58 59 60 61 62 63
VDD VPP NC NC NC NC VPP VR
O
VPP - Connect to +12V supply VR - Internally generated +2.2V Reference (Sources 20A maximum)
Note: An asterisk (*) following a pin symbol indicates that the pin is active low. Names begining with D_ are digital signals. Names ending with B and A are the positive and negative polarities of differential signals respectively
Rev. 1.00
-7-
XRT4000
Pin # 64 65 Symbol REG_CLK 2CK/3CK* DTE Mode DCE Mode Type I I Function Clock - For Transmitter 5, 8 input register. Internal 20K pull-up 2 or 3 Clock Select - Internal 20K pull-up Logic Don't Care: 1 Clock When Mode = X.21 (M2, M1, M0= 011) Logic 0: 3 Clocks When Mode X.21 (M2, M1, M0 011) Logic 1: 2 Clocks When Mode X.21 (M2, M1, M0 011) Test Oscillator Enable - Active Low; Logic 0: Oscillator Enabled. Logic 1: Oscillator Disabled. Internal 20K pull-up Invert Clock - Active Low; Logic 0: Clock Inverted. Logic 1: Clock not Inverted. Internal 20K pull-up Invert Data - Active Low; Logic 0: Data Inverted. Logic 1: Data not Inverted. Internal 20K pull-up Digital VSS for Transmitter 1, 2, 3 Output Drivers; Connect to -6V Digital GND for Transmitter 1, 2, 3 Output Drivers Digital VDD for Transmitter 1, 2, 3 Output Drivers; Connect to +5V Analog VDD for Transmitter 1, 2; Connect to +5V Analog VSS for Transmitter 1, 2; Connect to -6V Analog GND for Transmitter 1, 2 "T" termination Transmitter 1- Digital Data Input from equipment AC GND - Transmitter 1 Output Termination center tap in V.35 mode Transmitter 1 - Positive Data Differential Output to line Transmitter 1 - Negative Data Differential Output to line Transmitter 2 - Negative Data Differential Output to line Transmitter 2 - Positive Data Differential Output to line AC GND - Transmitter 2 Output Termination center tap in V.35 mode Transmitter 2 - Digital Data Input from equipment Digital VDD for Receiver and Transmitter 1, 2, 3; Connect to +5V DTE Mode - Input not used DCE Mode - Transmitter 3 - Digital Data Input from equipment Digital VSS for Receiver and Transmitter 1, 2, 3; Connect to -6V DTE Mode - AC GND - Transmitter 3 Output Termination center tap in V.35 mode DCE Mode - AC GND - Receiver 3 Input Termination center tap in V.35 mode DTE Mode - Receiver 3 - Negative Data Differential Input from line. DCE Mode - Transmitter 3 - Negative Data Differential Output to line.
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
EN_OSC* CKINV* DTINV* VSS GND VDD VDD VSS GND TX1D CM_TX1 TX1B TX1A TX2A TX2B CM_TX2 TX2D VDD TX3D VSS CM_TR3
I I I
D_TXD TXDB TXDA SCTEA SCTEB D_SCTE D_X
D_RXD RXDB RXDA RXCA RXCB D_RXC D_TXC
I O O O O O O I I
O
87
TR3A
TXCA
TXCA
I/O
Note: An asterisk (*) following a pin symbol indicates that the pin is active low. Names begining with D_ are digital signals. Names ending with B and A are the positive and negative polarities of differential signals respectively
Rev. 1.00
-8-
XRT4000
Pin # 88 Symbol TR3B DTE Mode TXCB DCE Mode TXCB Type I/O Function DCE Mode - Transmitter 3 - Positive Data Differential Output to line DTE Mode - Receiver 3 - Positive Data Differential Input from line Analog GND for Receiver 1, 2, 3 DTE Mode - Receiver 3- Digital Data Output to equipment DCE Mode - Not used Digital VDD for Receiver 2, 3; Connect to +5V Digital GND for Receiver 2, 3 Receiver 2 - Digital Data Output to equipment Analog VSS for Receiver 1, 2, 3; Connect to -6V Receiver 2 - Positive Data Differential Input from line Receiver 2 - Negative Data Differential Input from line Receiver 2 - Negative Data Differential Input from line Receiver 2 - Positive Data Differential Input from line Analog VDD for Receiver 1, 2, 3; Connect to +5V Receiver 1 - Digital Data Output to equipment
89 90 91 92 93 94 95 96 97 98 99 100
GND RX3D VDD GND RX2D VSS RX2B RX2A RX1A RX1B VDD RX1D
D_TXC
D_X
O
D_RXC RXCB RXCA RXDA RXDB D_RXD
D_SCTE SCTEB SCTEA TXDA TXDB D_TXD
O I I I I O
Note: An asterisk (*) following a pin symbol indicates that the pin is active low. Names begining with D_ are digital signals. Names ending with B and A are the positive and negative polarities of differential signals respectively.
Rev. 1.00
-9-
XRT4000
ELECTRICAL CHARCTERISTICS Test Conditions: VDD = 5V, VSS = -6V, VPP = 12V (all 5%), TA = 25C
Sybol Parameter Min Typ 20 Max Unitd mA M0 0 M1 0 M2 0 Interface V.10, No Load
Supply Currents IDD VDD Supply Current (DCE Mode, All Digital Pins=GND or VDD)
90 20 160 55 55 16 16 2 30
mA mA mA mA mA mA mA mA mA
0 1 1 0 0 0 0 1 0
0 0 0 0 0 1 1 1 0
0 0 0 1 1 1 1 1 0
V.10, Full Load EIA-530A, No Load EIA-530A, Full Load V.35, No Load on V.28 Drivers V.35, Full Load on V.28 Drivers RS232, No Load RS232, Full Load Power Down Mode V.10, No Load
ISS
VSS Supply Current (DCE Mode, All Digital Pins=GND or VDD)
90 30 50 45 55 16 30 2 10
mA mA mA mA mA mA mA mA mA
0 1 1 0 0 0 0 1 0
0 0 0 0 0 1 1 1 0
0 0 0 1 1 1 1 1 0
V.10, Full Load EIA-530A, No Load EIA-530A, Full Load V.35, No Load on V.28 Drivers V.35, Full Load on V.28 Drivers RS232, No Load RS232, Full Load Power Down Mode V.10, No Load
IPP
VPP Supply Current (DCE Mode, All Digital Pins = GND or VDD)
10 10
mA mA
0 1
0 0
0 0
V.10, Full Load EIA-530A, No Load
10 10 20 10 25 10
mA mA mA mA mA mA
1 0 0 0 0 1
0 0 0 1 1 1
0 1 1 1 1 1
EIA-530A, Full Load V.35, No Load on V.28 Drivers V.35, Full Load on V.28 Drivers RS232, No Load RS232, Full Load Power Down Mode
Note 1: Absolute Maximum Ratings are those beyond which the safety of a device may be impaired. Note 2: All currents into device pins are positive; all currents out of device are negative. All voltages are referenced to device ground unless otherwise specified.
Rev. 1.00
- 10 -
XRT4000
ELECTRICAL CHARCTERISTICS (CONT'D) Test Conditions: VDD = 5V, VSS = -6V, VPP = 12V (all 5%), TA = 25C
Symbol Parameter Logic Inputs and Outputs VIH Logic Input High Voltage VIL Logic Input Low Voltage IIN Logic Input Current VOH Output High Voltage VOL Output Low Voltage IOSR Output ShortCircuit Current IOZR Three-State Output Current V.11 Driver VOD Differential Output Voltage Change in VOD Magnitude of Differential Output Voltage VOC Common Mode Output Voltage Change in VOC Magnitude of Common Mode Output Voltage ISS Short-Circuit Current IOZ Output Leakage Current tr, tf Rise or Fall Time TPLH Input to Output TPHL Input to Output Inp. to Out. t Difference, |TPLH - TPHL| TSKEW Output to Output Skew Min 2 0.8 250 3 4.5 0.3 -60 0 1 0.8 60 Typ Max Units V V A V V mA A With 20k internal pull-up/down resistor IO = -4mA IO = 4mA 0V VO VDD M0 = Ml = M2 = VDD 0V VO VDD Conditions
5 2 0.2
V V
Open Circuit RL = 50 (Figure 6) RL = 50 (Figure 6)
3.0 0.2
V V
RL = 50 (Figure 6) RL = 50 (Figure 6)
150 0.01 4 50 50 0 13 70 70 5 100 25 110 110 15
mA A ns ns ns ns
VO = GND -0.25V VO 0.25V, Power Off or Driver Disabled (Figures 7, 11) (Figures 7, 11) (Figures 7, 11) (Figures 7, 11)
5
ns
(Figures 7, 11)
Note 1: Absolute Maximum Ratings are those beyond which the safety of a device may be impaired. Note 2: All currents into device pins are positive; all currents out of device are negative. All voltages are referenced to device ground unless otherwise specified.
Rev. 1.00
- 11 -
XRT4000
ELECTRICAL CHARCTERISTICS (CONT'D) Test Conditions: VDD = 5V, VSS = -6V, VPP = 12V (all 5%), TA = 25C
Symbol Parameter V.11 Receiver VTH Input Threshold Voltage VTH IIN RIN tr, tf TPLH TPHL t Input Hysteresis Input Current (A, B) Input Impedance Rise or Fall Time Input to Output Input to Output Inp. to Out. Difference, |TPLH - TPHL| Differential Output Voltage Transmitter Output High Current Transmitter Output Low Current Transmiter Output Leakage Current Rise or Fall Time Min -0.2 35 1 9 50 50 0 10 20 80 80 5 Typ Max 0.2 60 1.5 11 120 120 15 mV mA k ns ns ns ns Units Conditions -7V VCM 7V -7V VCM 7V -10V VA,B 10V -10V VA,B 10V (Figures 7, 12) (Figures 7, 12) (Figures 7, 12) (Figures 7, 12)
V.35 Driver VOD IOH
0.44 -12
0.55 -11
0.66 -10
V mA
With Load, (Figure 12) VA, B = 0V
IOL
10
11
12
mA
VA, B = 0V
IOZ tr, tf TPLH TPHL t
0.01 5 55 55 5
100
A ns ns ns ns
-0.25 VA,B 0.25V (Figures 8, 11) (Figures 8, 11) (Figures 8, 11) (Figures 8, 11)
Input to Output Input to Output Inp. to Out. Difference, |TPLH - TPHL| TSKEW Output to Output Skew V.35 Receiver VTH Differential Input Threshold Volt. Input Hysteresis VTH IIN Input Current (A,B) RIN Input Impedance (A, B) tr, tf Rise or Fall Time TPLH Input to Output TPHL Input to Output Input to Output t Difference, ITPLH - TPHLI
25 25 0
85 85 15
5
ns
(Figures 8, 11)
-0.2 35 60 175 20 80 100 5
0.2 60
V mV mA ns ns ns ns
-2V = (VA + VB)/2 = 2V (Figure 8) -2V = (VA + VB)/2 = 2V (Figure 8) -10V = VA, B = 10V -10V = VA, B = 10V (Figures 8, 12) (Figures 8, 12) (Figures 8, 12) (Figures 8, 12)
120 120 15
Note 1: Absolute Maximum Ratings are those beyond which the safety of a device may be impaired. Note 2: All currents into device pins are positive; all currents out of device are negative. All voltages are referenced to device ground unless otherwise specified.
Rev. 1.00
- 12 -
XRT4000
ELECTRICAL CHARCTERISTICS (CONT'D) Test Conditions: VDD = 5V, VSS = -6V, VPP = 12V (all 5%), TA = 25C
Symbol V.10 Driver VO ISS IOZ tr, tf TPLH TPHL Parameter Output Voltage Short-Circuit Current Input Leakage Current Rise or Fall Time Input to output Input to output Min 4.0 3.6 Typ Max 6.0 100 0.1 0 5 5 5 100 Units V V mA A s s s Conditions Open Circuit, RL = 3.9k RL = 450 (Figure 9) VO = GND -0.25 VO 0.25V, Power Off or Driver Disabled (Figures 9, 13), RL = 450, CL = 100pF RSLEW_CNTL = 10k (Figures 9, 13), RL = 450, CL = 100pF RSLEW_CNTL = 10k (Figures 9, 13), RL = 450, CL = 100pF RSLEW_CNTL = 10k
V.10 Receiver VTH Receiver Input Threshold Voltage AVTH Receiver Input Hysteresis IIN Receiver Input Current RIN Receiver Input Impedance tr, tf Rise or Fall Time TPLH Input to Output TPHL Input to Output V.28 Driver VO Output Voltage ISS IOZ SR TPLH TPHL Short-Circuit Current Input Leakage Current Slew Rate Input to output Input to output
-0.2 35 1 9 10 20 100 100
0.2 60 1.5 11
V mV mA k ns ns ns -10 VA 10V -10 VA 10V (Figures 10, 14) (Figures 10, 14) (Figures 10, 14) Open Circuit RL = 3k (Figure 9) VO = GND -0.25 VCM 0.25V, Power Off or Driver Disabled (Figures 9, 13), RL = 3k, CL = 2500pF (Figures 9, 13), RL = 3k, CL = 2500pF (Figures 9, 13), RL = 3k, CL = 2500pF
6 5 5.5 100 0.01 4.0 2 2 1.4 2.0 0.1 3 1.4 0.4 5 20 120 180 1.0 7 100 30.0 4 4 0.8
V mA A V/s s s V V V k ns ns ns
V.28 Receiver VTHL Input Low Threshold Voltage VTLH Input High Threshold Voltage AVTH Receiver Input Hysteresis RIN Receiver Input Impedance tr, tf Rise or Fall Time TPLH Input to Output TPHL Input to Output
-15 VA 15V (Figures 10, 14) (Figures 10, 14) (Figures 10, 14)
Rev. 1.00
- 13 -
XRT4000
The following tests circuits and timing diagrams are referenced in the preceding Electrical Characteristics Tables.
Figure 6. RS422 Driver Test Circuit
Figure 7. RS422 Driver/Receiver AC Test Circuit
Figure 8. V.35 Driver/Receiver AC Test Circuit (TX1/RX1, TX2/RX2 Only)
Figure 9. V.10/V.28 Driver Test Circuit
Figure 10. V.10/V.28 Receiver Test Circuit
Rev. 1.00
- 14 -
XRT4000
Figure 11. V.11, V.35 Driver Propagation Delays
V1 = 0V for V.35, 2.5V for V.11
Figure 12. V.11, V.35 Receiver Propagation Delays
Figure 13. V.10, V.28 Driver Propagation Delays
V1 = 1.8V for V.28, 0.1V for V.10 V2 = 1.0V for V.28. -0.1V for V.10
Figure 14. V.10, V.28 Receiver Propagation Delays
Rev. 1.00
- 15 -
XRT4000
SYSTEM DESCRIPTION It is important to describe the difference between an electrical specification and a physical interface specification. An electrical specification defines the electrical characteristics of a transmitter or receiver. These include voltage, current, impedance levels, rise/fall times and other similar parameters. Popular electrical interfaces are V.10, V.11, V.35 and V.28. A serial physical interface specification, however, describes an interface in its entirety. This description includes the names and functions of all involved signals, the electrical parameters of each of the signals, and the connector type. Popular serial interface types include V.35, RS232 (V.28), RS449, EIA-530(A), X.21, and V.36. The XRT4000 contains a sufficient number of receivers, transmitters and transceivers to transport all of the signals required for a physical serial interface. It has control circuitry that can configure each driver and receiver to the appropriate electrical levels required by the specification for the selected serial interface. Figure 1 is a top level block diagram that shows how the eight receivers and eight transmitters present in the XRT4000 are grouped in three modules named RTMOD1, RTMOD2, and RTMOD3. A forth module labeled CONTROL programs these receivers and transmitters with the appropriate electrical levels for operation with most popular standard serial interfaces such as V.35, RS232, RS449, EIA-530(A), X.21, and V.36. These interfaces are fully compliant with international NET1 and NET2 specifications. Figures 2, 3, 4, and 5 are a set of functional block diagrams that give more detailed information about the four modules shown in the top-level diagram. The eight receivers and transmitters are grouped in three different categories according to the type of signals transmitted or received. The categories are denoted as RTMOD1 (Figure 2), RTMOD2 (Figure 3), RTMOD3 (Figure 4), and CONTROL (Figure 5). RTMOD1 Block RTMOD1 is intended for the high speed data and clock signals of a selected interface. This block contains receivers RX1 and RX2, transmitters TX1 and TX2, and bi-directional transceiver TR3 which is composed of TX3 and RX3. All of these devices may be programmed with the electrical levels required for V.35, V.11, V.10, or V.28 operating modes. In V.35 mode, each transmitter has a common mode pin that is connected to the center of the internal termination. This pin should be bypassed to ground with an external capacitor in order to provide the best possible driver output stage balance. In a system application, the TX1-RX1 pair and TX2-RX2 pair handle the TXD-RXD and TXC-RXC high-speed interface signals respectively. Transceiver TR3 is dedicated to the SCTE signal for both DCE and DTE modes of operation. It functions as a receiver for the DTE mode and as a transmitter during the DCE mode. RTMOD2 Block RTMOD2 contains receivers RX4 and RX5, transmitters TX4 and TX5, and transceiver TR6 which is composed of TX6 and RX6. These devices may be programmed with the electrical levels required for V.11, V.10, or V.28 operating modes. The RX4-TX4 pair are dedicated for RTS and CTS signals while RX5-TX5 are intended for DTR and DSR signals. Transceiver TR3 handles the DCD signal which requires a transmitter in the DCE and a receiver in-theDTE mode. RTMOD3 Block RTMOD3 contains transceiver TR7, which is composed of TX7 and RX7, receiver RX8 and transmitter TX8. These devices, which may be programmed with the electrical levels required for V.10, or V.28 operating modes, are intended for the LL, RL and RI signals.
Rev. 1.00
- 16 -
XRT4000
CONTROL Block The CONTROL block contains the configuration and bias generation circuitry required by RTMOD1, RTMOD2, and RTMOD3. It includes TTL to CMOS level shifters for the control signal inputs which have either an internal 20 k pullup or pull-down resistor as shown in Figure 5 and as described in the pin description. This block also includes a reference voltage source, bias voltage and current generators, and a slew rate control circuit that is used in the V.10 and V.28 modes. The physical interface configuration is done by three control pins called M0, M1 and M2. The logic levels present on these three inputs are internally latched during a positive transition of the LATCH* signal. The functions of the eight possible combinations of M0, M1 and M2 are described in Tables 1 and 2. Power Requirements Table 3, which contains the maximum and minimum peak supply currents for each of the 3 supply voltages, provides the information necessary for determining a system power budget. Notice that maximum current is required in the V.11 mode when TX1, TX2, and TX3 are terminated with 100. Minimum current consumption occurs when none of the transmitters are terminated and the device is not in the V.35 mode. Receiver and Transmitter Specifications Tables 4 and 5, which are for the XRT4000 receiver and transmitter sections respectively, summarize the electrical requirements for V.35, V.11, V.10, and RS232 interfaces. These tables provide virtually all of the electrical information necessary to describe these 4 interfaces in a concise form.
Rev. 1.00
- 17 -
XRT4000
CONTROL INPUTS M2 M1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 M0 0 1 0 1 0 1 0 1 TX1 RX1 DRIVER/RECEIVER PAIR AND CORRESPONDING SIGNAL NAME - DTE MODE TX2 RX2 TX3 RX3 Off Off Off Off Off Off Off Off TXC 10 11 11 11 35 11 28 Off TX4 RTS 10 11 11 11 28 11 28 Off RX4 CTS 10 11 11 11 28 11 28 Off TX5 RX5 TX6 Off Off Off Off Off Off Off Off RX6 DCD 10 11 11 Off 28 11 28 Off TX7 LL 10 10 10 Off 28 10 28 Off RX7 TM Off Off Off Off Off Off Off Off TXD RXD SCTE RXC 10 11 11 11 35 11 28 Off 10 11 11 11 35 11 28 Off 10 11 11 11 35 11 28 Off 10 11 11 11 35 11 28 Off DTR DSR 10 10 11 11 28 11 28 Off 10 10 11 11 28 11 28 Off RL 10 10 10 Off 28 10 28 Off RI 10 V.10 10 EIA-530-A 10 EIA-530, RS449, V.36 Off X.21 28 V.35 10 RESERVED 28 RS232 Off POWER DOWN INTERFACE TX8 RX8 STANDARD
Table 1. DTE Mode - Control Programming for Driver and Receiver Mode Selection
CONTROL INPUTS TX1 RX1
DRIVER/RECEIVER PAIR AND CORRESPONDING SIGNAL NAME - DCE MODE TX2 RX2 TX3 RX3 TX4 Off Off Off Off Off Off Off Off RX4 TX5 DSR 10 10 11 11 28 11 28 Off RX5 DTR 10 10 11 11 28 11 28 Off TX6 DCD 10 11 11 OFF 28 11 28 Off RX6 TX7 Off Off Off Off Off Off Off Off TM Off Off Off Off Off Off Off Off RX7 TX8 LL 10 10 10 Off 28 10 28 Off RI 10 10 10 Off 28 10 28 Off RX8 RL 10 10 10 Off 28 10 28 Off V.10 CTS RTS 10 11 11 11 28 11 28 Off 10 11 11 11 28 11 28 Off
INTERFACE STANDARD
M2 M1 M0 RXD TXD RXC SCTE TXC 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 10 11 11 11 35 11 28 Off 10 11 11 11 35 11 28 Off 10 11 11 11 35 11 28 Off 10 11 11 11 35 11 28 Off 10 11 11 11 35 11 28 Off
EIA-530-A EIA-530, RS449, V.36 X.21 V.35 RESERVED RS232 POWER DOWN
Table 2. DCE Mode - Control Programming for Driver and Receiver Mode Selection
Note: For the above tables:
Table Representation 35 11 10 28
Corresponding Electrical Level V.35 V.11 V.10 V.28/RS232
Type Signal Differential Differential Single Ended Single Ended
Rev. 1.00
- 18 -
XRT4000
Supply Maximum Current TX1-TX3 Drivers Terminated with 100 in V.11 Mode 160 mA 120 mA 40 mA Minimum Current None of the Drivers Terminated (Non-V.35 Mode) 15 mA 20 mA 10 mA
VDD (+5V) VSS (-6V) VPP (+12V)
Table 3. Maximum and Minimum Peak Supply Currents
V.35 Single-Ended or Differential Max Signal Level Min Signal Level Common-Mode Voltage Max Signal Peak Operation Max Signal Peak no Damage Rin Differential Rin Common-Mode DC Rin Each Input to Ground Clock Frequency DIFF 660 mV 440 mV 2V 2.66 V N/A 100 10% 150 15% > 8K 20 MHz
V.11 DIFF 6V 300 mV 7V 10 V 12 V Note 2 N/A > 8K 20MHz
V.10 Single-Ended 6V 300 mV Note 1 10 V 12 V N/A N/A > 8K 120KHz
RS232 Single-Ended 15 V 3V N/A 15 V 25 V N/A N/A 3K < DC Rin < 7 K 256KHz
Table 4. Receiver Specifications
Note 1: 7 V on Receivers 1-6, not applicable for Receivers 7-8 Note 2: 100 to 150 Ohms terminated.
Rev. 1.00
- 19 -
XRT4000
V.35 Single-Ended or Differential Max Signal Level DIFF 660 mV RL= 100 440 mV RL= 100 N/A 100 10% 150 15% N/A 20 ns 20 MHz V.11 DIFF |V0| < 6 V RL=3900 2V < |VT| >0.5 V0 RL=100 |Vos| < 3V 100 N/A N/A 20 ns 20 MHz V.10 Single-Ended 4 < |V0| < 6 V RL=3900 |VT| > 0.9 V0 RL= 450 N/A N/A N/A N/A 1ms 120 KHz RS232 Single-Ended 6V 3000 < RL < 7000 5V 3000 < RL < 7000 N/A N/A N/A > 300 < 30 V/s 256 KHz
Min Signal Level
Offset Voltage Rout Differential Rout Common-Mode Rout Power Off Output Slew Rate/Tr,Tf Clock Frequency
Table 5. Transmitter Specification
V.10\V.28 Output Pulse Rise and Fall Time SLEW_CNTL (pin 47) is an analog output that controls transmitter pulse rise and fall time for the V.10 and V.28 modes. Connecting a resistor, RSLEW, having a value between 0 and 200 k from this pin to ground controls the rise/fall times for V.10 and the slew rate for V.28 as shown in Figures 15 and 16 respectively. High-Speed RS232 Mode When E_232H* (pin 55) is set to logic 0 in RS232 mode, the transmitters are put is a special high-speed RS232 mode that can drive loads of 3000 in parallel with 1000pF at speeds up to 256 KHz. Power Down Mode All transmitters and receivers may be powered down by either setting the pins for control bits M0, M1 and M2 to logic 1 or by leaving them open. Internal Cable Terminations XRT4000 has fully integrated receiver and transmitter cable terminations for high speed signals (RXD, TXD, RXC, TXC, SCTE).
Therefore, no external resistors and/or switches are necessary to implement the proper line termination. The schematic diagrams given in Figures 17 and 18 show the effective receiver and transmitter terminations respectively for each mode of operation. When a specific electrical interface is selected by M0, M1 and M2, the termination required for that interface is also automatically chosen. The XRT4000 eliminates double termination problems and makes point to multipoint operation possible in the V.11 mode by providing the option for disabling the internal input termination on high speed receivers. Glitch Filters Occasional extraneous glitches on control/handshake signal inputs such as CTS, RTS, DTR and DSR can have damaging effects on the integrity of a connection. The XRT4000 is equipped with lowpass filters on the input of each of the receivers for the control and handshake signals. These filters eliminate glitches which are narrower than 10s. The user may disable these filters by setting EN_FLTR to logic 0.
Rev. 1.00
- 20 -
XRT4000
Clock Inversion Transmit Clock signal, TXC, has an inversion option for both DTE and DCE modes of operation. The user can invert the polarity of the TXC by setting CKINV* to logic 0. In the DTE mode, the incoming TXC signal from the line will be inverted before it is routed to the system. In DCE mode, the incoming TXC signal from the system will be inverted before it is sent over the line toward the remote DTE. This feature allows a phase correction when there is a long cable delay between the DTE and DCE. This correction may be necessary in order to obtain the desired clock-to-data phase relationship. Data Inversion Similar to TXC, there is a provision in the XRT4000 to invert the TXD and RXD signals. Once the Setting the DTINV* input to logic 0 enables an inverter at the output of RX1 and input of TX1. Registered Mode of Operation The XRT4000 has integrated registers allowing users the option of clocking the values of DSR/DTR and RL/RI signals. This can be done if the registered mode of operation is selected (REG=1). In this case, the values of these signals will be latched on the positive edge of the REG_CLK signal. In the normal mode (REG = 0), the registers on the path of the DSR/DTR and RL/RI are bypassed and REG_CLK will have no effect. Similarly, the outputs of the receivers (RX5 and RX8) can be disabled by setting the EN_OUT* input high. This allows these drivers to be connected directly to a microcontroller bus since they can be enabled during read cycles and disabled in other times. This feature eliminates the need for external registers when a microcontroller is used to control (reading and writing) DSR/DTR and RL/RI signals. Loopbacks XRT4000 contains internal logic to place the interface in a loopback mode for test purposes. The loopback feature is supported in both DTE and DCE modes of operation and it can be invoked by setting the LP* input at logic 0. Possible loopback implementations are depicted in the scenarios located at the end of this document.
Rev. 1.00
- 21 -
XRT4000
3 1 10
V.10 Rise Time (us)
100
10
1 10
100 R (K Ohms)
3 1 10
Figure 15. V.10 Rise Time as a Function of RSLEW
10
V.28 Slew Rate (V/us)
1
0.1
0.01 10
100 R (K Ohms)
3 1 10
Figure 16. V.28 Slew Rate Over 3 V Output Range with 3 k in Parallel with 2500 pF Load as a Function of RSLEW
Rev. 1.00
- 22 -
XRT4000
Echoed Clock The XRT4000 can interface with serial controllers which have two or three clock pins. Furthermore, it can handle interfaces (e.g. X.21) which have only one clock. Information contained in the Pin Description for the EC* and 2CK/3CK* pins shows how the user can select the number of available clocks by applying the appropriate logic levels to these inputs. Self-contained DTE Loopback Testing Equipment having a DTE interface obtains timing information from another interface (DCE). RXC and TXC are clocks which are sourced by the DCE. A DTE device uses them to clock data in/out of the interface. The SCTE clock is generated by DTE using TXC or RXC which are originated in the DCE. In summary, a DTE equipment is a timing slave. Occasionally it is beneficial to conduct testing of a DTE interface without connecting it to its DCE counterpart. Lack of a synchronization source will make the standalone testing of DTE equipment not possible. The XRT4000 has an on-board oscillator which can be used as a timing source while the DCE connection is missing. This feature allows users to conduct loopback testing on isolated equipment with a DTE interface. This mode is invoked if EN_OSC* is set to logic 0. This connects an internally generated clock signal (32 kHz - 64 kHz) to the RX2D/RX3D output. A standalone system test may be performed by combining this feature with the appropriate loopback mode. Operational Scenarios Visualizing features such as clock/data inversion, echoed clock, and loopbacks, in DTE and DCE modes makes configuring the XRT4000 a non-trivial task. A series of 48 system level application diagrams located at the end of the data sheet called "Scenarios" assist users in understanding the benefits of these different features. The internal XRT4000 connections required for a particular scenario are made through MUX1 and MUX2 that are shown on the block diagrams given in Figures 2 and 3 respectively. Table 6 contains the signal routing information versus control input logic level for MUX1 and Table 7 contains similar information for MUX2.
Rev. 1.00
- 23 -
XRT4000
APPLICATIONS INFORMATION Traditional interfaces either require different transmitters and receivers for each electrical standard, or use complicated termination switching methods to change modes of operation. Mechanical switching schemes, which are expensive and inconvenient, include relays, and custom cables with the terminations located in the connectors. Electrical switching circuits using FETs are difficult to implement because the FET must remain off when the signal voltage exceeds the supply voltage and when the interface power is off. The XRT4000 uses innovative, patented circuit design techniques to solve the termination switching problem. This device includes internal circuitry that may be controlled by software to provide the correct terminations for V.10 (RS423), V.11 (RS422), V.28 (RS232), and V.35 electrical interfaces. The schematic diagrams given in Figures 17 and 18 conceptually show the switching options for the high-speed receiver input and transmitter output terminations respectively. Additionally, Tables 4 and 5 provide a summary of receiver and transmitter specifications respectively for the different electrical modes of operation. V.10 (RS423) Interface Figure 19 shows a typical V.10 (RS423) interface. This configuration uses an unbalanced cable to connect the transmitter TXA output to the receiver RXA input. The "B" outputs and inputs that are present on the differential transmitters and receivers contained in the XRT4000 are not used. The system ground provides the signal return path. The receiver input resistance is 10 k nominal and no other cable termination is normally used for the V.10 mode. V.11 (RS422) Interface Figure 11 shows a typical V.11 (RS422) interface. This configuration uses a balanced cable to connect the transmitter TXA and TXB outputs to the receiver RXA and RXB inputs respectively. The XRT4000 includes provisions for adding a 125 terminating resistor for the V.11 mode. Although this resistor is optional in the V.11 specification, it is necessary to prevent reflections that would corrupt signals on highspeed clock and data lines. The differential receiver input resistance without the optional termination is 20 k nominal. V.28 (RS232) Interface Figure 19 shows a typical V.28 (RS232) interface. This configuration uses an unbalanced cable to connect the transmitter TXA output to the receiver RXA input. The "B" outputs and inputs that are present on the differential transmitters and receivers contained in the XRT4000 are not used. The system ground provides the signal return path. The receiver "B" input is internally connected to a 1.4 V reference source to provide a 1.4 V threshold. The receiver input resistance is 5 k nominal and no other cable termination is normally used for the V.28 mode. V.35 Interface Figure 21 shows a typical V.35 interface. This configuration uses a balanced cable to connect the transmitter TXA and TXB outputs to the receiver RXA and RXB inputs respectively. The XRT4000 internal terminations meets the following V.35 requirements. The receiver differential input resistance is 100 10 and the shorted-terminal resistance (RXA and RXB connected together) to ground is 150 15 . The transmitter differential output resistance is 100 10 and the shorted-terminal resistance (TXA and TXB connected together) to ground is 150 15. The junction of the 3 resistors (CMTX) on the transmit termination is brought out to pins 76 and 81 for TX1 and TX2 respectively. Figure 21 shows how capacitor C having a value of 100 to 1000 pF bypasses this point to ground to reduce common mode noise. This capacitor shorts current caused by differential driver rise and fall time or propagation delay miss-match directly to ground. If it was not present, the flow of this current through the 125 resistor to ground would cause common mode voltage spikes at the TXA and TXB outputs.
Rev. 1.00
- 24 -
XRT4000
RXxA R9 4K RXxB R1 20 R3 85 S1 S2 R8 10K S3 R2 20 R10 4K To Receiver
R11 6K
R12 6K
R4 30
R4 30
S4
R6 125
Mode S1 V.35 V.11 Terminated V.11 Unterminated V.10 V.28 Closed Open Open Open Open
Switches S2 S3 Closed Open Open Open Open Open Closed Open Open Open
S4 Open Open Open Open Open
Figure 17. Receiver Termination
TXxB TXxA S1 S2
R1 50
R2 50
R3 125
Mode V.35 V.11/V.10/V.28
Switches S1 S2 Closed Open Closed Open
Rev. 1.00
- 25 -
XRT4000
Figure 18. Transmitter Termination
Figure 19. Typical V.10 or V.28 Interface (R1 = 10 K in V.10 and 5 K in V.28)
Figure 20. Typical V.11 Interface (Termination Resistor, R1, is Optional.)
Figure 21. Typical V.35 Interface
Note: All Resistors shown above are internal to the XRT4000.
Rev. 1.00
- 26 -
XRT4000
Scenario Number Logic Level Applied to Control Input Name/Pin Number DCE/ DTE* 39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 X 0 0 EC* 42 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X 1 0 2CK/ 3CK* 65 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 X X X X X X X X 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 X X X X X X X X X X X LP* 22 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 X 0 0 CK INV* 67 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 X X X DT INV* 68 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 X X EN _OSC* 66 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 RX1D 100 RX1B-RX1A RX1B-RX1A TX1D TX1D RX1B-RX1A RX1B-RX1A TX1D TX1D RX1B-RX1A RX1B-RX1A TX1D TX1D RX1B-RX1A RX1B-RX1A TX1D TX1D RX1B-RX1A RX1B-RX1A TX1D TX1D RX1B-RX1A RX1B-RX1A TX1D TX1D RX1B-RX1A RX1B-RX1A TX1D TX1D RX1B-RX1A RX1B-RX1A TX1D TX1D RX1B-RX1A RX1B-RX1A TX1D TX1D RX1B-RX1A RX1B-RX1A TX1D TX1D RX1B-RX1A RX1B-RX1A TX1D TX1D RX1B-RX1A RX1B-RX1A TX1D TX1D INVERT UNCHANGED UNCHANGED TX1B-TX1A 77,78 TX1D TX1D RX1B-RX1A RX1B-RX1A TX1D TX1D RX1B-RX1A RX1B-RX1A TX1D TX1D RX1B-RX1A RX1B-RX1A TX1D TX1D RX1B-RX1A RX1B-RX1A TX1D TX1D RX1B-RX1A RX1B-RX1A TX1D TX1D RX1B-RX1A NOTE 1 TX1D TX1D RX1B-RX1A RX1B-RX1A TX1D TX1D RX1B-RX1A RX1B-RX1A TX1D TX1D RX1B-RX1A RX1B-RX1A TX1D TX1D RX1B-RX1A RX1B-RX1A TX1D TX1D RX1B-RX1A RX1B-RX1A TX1D TX1D RX1B-RX1A NOTE 1 INVERT UNCHANGED UNCHANGED Signal Source for Output Name/Pin Number RX2D 93 RX2B-RX2A RX2B-RX2A TX2D TX2D RX2B-RX2A RX2B-RX2A TX2D TX2D RX2B-RX2A TX3D TX2D TX2D RX2B-RX2A TX3D TX2D TX2D RX2B-RX2A TX2D TX2D TX2D RX2B-RX2A (TX2D)* TX2D TX2D RX2B-RX2A RX2B-RX2A TR3B-TR3A TX3D RX2B-RX2A RX2B-RX2A (TR3B-TR3A)* TX3D RX2B-RX2A TX3D TR3B-TR3A TX3D RX2B-RX2A TX3D (TR3B-TR3A)* TX3D RX2B-RX2A TX3D RX2B-RX2A TX3D RX2B-RX2A (TX3D)* RX2B-RX2A TX3D UNCHANGED UNCHANGED 32-64 kHz TX2B-TX2A 80,79 TX2D TX2D RX2B-RX2A RX2B-RX2A TX2D TX2D RX2B-RX2A RX2B-RX2A X TX2D X TX3D X TX2D X TX3D X TX2D X RX2B-RX2A X TX2D X TX2D TR3B-TR3A TX3D RX2B-RX2A RX2B-RX2A (TR3B-TR3A)* TX3D RX2B-RX2A RX2B-RX2A X TX3D X TX3D X TX3D X TX3D X TX3D X TX3D X TX3D X TX3D UNCHANGED UNCHANGED UNCHANGED RX3D 90 TR3B-TR3A X TR3B-TR3A X (TR3B-TR3A)* X (TR3B-TR3A)* X TR3B-TR3A X TR3B-TR3A X (TR3B-TR3A)* X (TR3B-TR3A)* X RX2B-RX2A X TR3B-TR3A X (RX2B-RX2A)* X (RX2B-RX2A)* X TR3B-TR3A X TR3B-TR3A X (TR3B-TR3A)* X (TR3B-TR3A)* X TR3B-TR3A X TR3B-TR3A X (TR3B-TR3A)* X (TR3B-TR3A)* X RX2B-RX2A X RX2B-RX2A X (RX2B-RX2A)* X RX2B-RX2A X UNCHANGED 32-64 kHz 32-64 kHz TR3B-TR3A 88,87 X TX3D X TX3D X (TX3D)* X (TX3D)* X TX3D X TX3D X (TX3D)* X (TX3D)* X X X X X X X X X TX3D X TX3D X (TX3D)* X (TX3D)* X TX3D X TX3D X (TX3D)* X (TX3D)* X X X X X X X X UNCHANGED UNCHANGED UNCHANGED
Table 6. MUX1 Connection Table
Table entries are inputs to MUX1. Column headings are outputs. Signal names ending with A or B are analog inputs or outputs.
Rev. 1.00
- 27 -
XRT4000
Signal names ending with D are digital inputs or outputs. * Indicates signal complement. Note 1: Refer to Figure 22 located on the next page for signal definition. X is don't care.
Figure 22. Signal Definition for Scenario Number 48
Scenario Number
Control Input/ Pin Number DCE/ DTE* 39 LP* 22 0 1 0 1 RX4D 48 TX4D RX4B-RX4A TX4D RX4B-RX4A TX4B-TX4A 15,16 RX4B-RX4A TX4D RX4B-RX4A TX4D
Signal Source for Output Name/Pin Number RX5D 41 TX5D RX5B-RX5A TX76D RX5B-RX5A TX5B-TX5A 18,17 TR6B-TR6A TX5D RX5B-RX5A TX5D RX67D 40 TX5D TR6B-TR6A TR7 TR7 TR6B-TR6A 38,37 X X RX5B-RX5A TX76D TR7 35 TX76D TX76D X X
1 2 3 4
0 0 1 1
Table 7. MUX2 Connection Table
Table entries are inputs to MUX2. Column headings are outputs. Signal names ending with A or B are analog inputs or outputs. Signal names ending with D are digital inputs or outputs.
Rev. 1.00
- 28 -
XRT4000
Operating Modes for the XRT4000 Device The XRT4000 Multiprotocol Serial Interface device can be configured to operate in a wide variety of modes or "scenarios". This document illustrates some of these "scenarios" and provides the reader with the following information associated with each of these scenarios. * Which pins (on the "DCE Mode" XRT4000 and "DTE Mode" XRT4000 devices) are used to propagate various data or clock signals. * Which signals are to be used when operating the XRT4000 devices in the "differential" or "single-ended" modes. * How does one configure the "DCE Mode" and "DTE Mode" XRT4000 device to operate in these scenarios.
Notes: 1. The "line" signals are drawn with both a "solid" line and a "dashed" line. Both lines are used to transmit and receive "differential" mode signals. However, the "solid" line indentifies the signal that should be used, when operating the Transmitter in the "Single-Ended" mode. 2. Each scenarios includes a table that indicates how to configure the XRT4000 device into each of these modes, by specifying the appropriate logic states for EC*, 2CK/3CK*, LP*, CKINV*, DTINV*, and EN_OSC*. 3. In all, 48 scenarios have been defined for the XRT4000 device. Currently, this document only lists a subset of these scenarios. Further versions of the XRT4000 data sheet will include this information for all 48 scenarios.
Rev. 1.00
- 29 -
XRT4000
Scenarios 1 & 2
TXD
75 TX1
78 77
TXD
97 98 RX1 100 RXD
SCTE
82 TX2
79 80
SCTE
96 95 RX2 93 RXC
87 TXC 90 RX3 88
TXC
87 88 TX3
84 TXC
96 RXC 93 RX2 95
RXC
79 82 80 TX2 SCTE
97 RXD 100 RX1 98
RXD
78 77 TX1 75 TXD
HDLC (L)
T4000 (DTE)
T4000 (DCE)
HDLC (R)
Options
DTE DCE Normal Echo Mode 3 Clocks 2 Clocks 1 Clock (X.21) No Loopback Loopback No Invert Invert
Input Pin Settings (Scenarios 1 & 2)
T4000 (DTE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC* T4000 (DCE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC*
Pin Number 39 42 65 22 67 68 66
State 0 1 0 1 1 1 1
Pin Number 39 42 65 22 67 68 66
State 1 1 0 1 1 1 1
Rev. 1.00
- 30 -
XRT4000
Scenario 3
TXD
75 TXD TX1
78 77
97 98 RX1 100 RXD
82 SCTE TX2
79 80
SCTE
96 95 RX2 93 RXC
87 TXC 90 RX3 88
TXC
87 88 TX3
84 TXC
96 RXC 93 RX2 95
RXC
79 82 80 TX2 SCTE
97 RXD 100 RX1 98
RXD
78 77 TX1 75 TXD
HDLC (L)
T4000 (DTE)
T4000 (DCE)
HDLC (R)
Options
DTE DCE Normal Echo Mode 3 Clocks 2 Clocks 1 Clock (X.21) No Loopback Loopback No Invert Invert
Input Pin Settings (Scenario 3)
T4000 (DTE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC* T4000 (DCE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC*
Pin Number 39 42 65 22 67 68 66
State 0 1 0 0 1 1 1
Pin Number 39 42 65 22 67 68 66
State 1 1 0 1 1 1 1
Rev. 1.00
- 31 -
XRT4000
Scenario 4
78 TX1 77
75 TXD
TXD
97 98 RX1 100 RXD
SCTE
82 TX2
79 80
SCTE
96 95 RX2 93 RXC
87 TXC 90 RX3 88
TXC
87 84 88 TX3 TXC
96 RXC 93 RX2 95
RXC
79 82 80 TX2 SCTE
97 RXD 100 RX1 98
RXD
78 77 TX1 75 TXD
HDLC (L)
T4000 (DTE)
T4000 (DCE)
HDLC (R)
Options
DTE DCE Normal Echo Mode 3 Clocks 2 Clocks 1 Clock (X.21) No Loopback Loopback No Invert Invert
Input Pin Settings (Scenario 4)
T4000 (DTE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC* T4000 (DCE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC*
Pin Number 39 42 65 22 67 68 66
State 0 1 0 1 1 1 1
Pin Number 39 42 65 22 67 68 66
State 1 1 0 0 1 1 1
Rev. 1.00
- 32 -
XRT4000
Scenario 5
78 TX1 77
75 TXD
TXD
97 98 RX1 100 RXD
82 SCTE TX2
79 80
SCTE
96 95 RX2 93 RXC
87 TXC 90 RX3 88
TXC
87 88 TX3 84 TXC
96 RXC 93 RX2 95
RXC
79 80 TX2 82 SCTE
97 RXD 100 RX1 98
RXD
78 77 TX1 75 TXD
HDLC (L)
T4000 (DTE)
T4000 (DCE)
HDLC (R)
Options
DTE DCE Normal Echo Mode 3 Clocks 2 Clocks 1 Clock (X.21) No Loopback Loopback No Invert Invert
Input Pin Settings (Scenario 5)
T4000 (DTE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC* T4000 (DCE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC*
Pin Number 39 42 65 22 67 68 66
State 0 1 0 1 0 1 1
Pin Number 39 42 65 22 67 68 66
State 1 1 0 1 1 1 1
Rev. 1.00
- 33 -
XRT4000
Scenario 6
78 TX1 77
TXD
75 TXD
97 98 RX1 100 RXD
82 SCTE TX2
79 80
SCTE
96 95 RX2 93 RXC
87 TXC 90 RX3 88
TXC
87 88 TX3 84 TXC
96 RXC 93 RX2 95
RXC
79 82 80 TX2 SCTE
97 RXD 100 RX1 98
RXD
78 77 TX1 75 TXD
HDLC (L)
T4000 (DTE)
T4000 (DCE)
HDLC (R)
Options
DTE DCE Normal Echo Mode 3 Clocks 2 Clocks 1 Clock (X.21) No Loopback Loopback No Invert Invert
Input Pin Settings (Scenarios 1 & 2)
T4000 (DTE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC* T4000 (DCE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC*
Pin Number 39 42 65 22 67 68 66
State 0 1 0 1 1 1 1
Pin Number 39 42 65 22 67 68 66
State 1 1 0 1 0 1 1
Rev. 1.00
- 34 -
XRT4000
Scenario 7
78 75 TXD TX1 77
TXD
97 98 RX1 100 RXD
79 82 SCTE TX2 80
SCTE 96
95 RX2 93 RXC
87 TXC 90 RX3 88
TXC
87 88 TX3
84 TXC
96 RXC 93 RX2 95 97 RXD 100 RX1 98
RXC
79 80 TX2 82 SCTE
RXD
78 77 TX1 75 TXD
HDLC (L)
T4000 (DTE)
T4000 (DCE)
HDLC (R)
Options
DTE DCE Normal Echo Mode 3 Clocks 2 Clocks 1 Clock (X.21) No Loopback Loopback No Invert Invert
Input Pin Settings (Scenarios 7)
T4000 (DTE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC* T4000 (DCE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC*
Pin Number 39 42 65 22 67 68 66
State 0 1 0 0 0 1 1
Pin Number 39 42 65 22 67 68 66
State 1 1 0 1 1 1 1
Rev. 1.00
- 35 -
XRT4000
Scenario 8
78 TXD 75 TX1 77
TXD
97 98 RX1 100 RXD
79 SCTE 82 TX2 80
SCTE
96 95 RX2 93 RXC
87 TXC 90 RX3 88
TXC
87 88 TX3 84 TXC
96 RXC 93 RX2 95
RXC
79 82 80 TX2 SCTE
97 RXD 100 RX1 98
RXD
78 77 TX1 75 TXD
HDLC (L)
T4000 (DTE)
T4000 (DCE)
HDLC (R)
Options
DTE DCE Normal Echo Mode 3 Clocks 2 Clocks 1 Clock (X.21) No Loopback Loopback No Invert Invert
Input Pin Settings (Scenario 8)
T4000 (DTE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC* T4000 (DCE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC*
Pin Number 39 42 65 22 67 68 66
State 0 1 0 1 1 1 1
Pin Number 39 42 65 22 67 68 66
State 1 1 0 0 0 1 1
Rev. 1.00
- 36 -
XRT4000
Scenarios 9 & 10
78 TXD 75 TX1 77
TXD
97 98 RX1 100 RXD
79 SCTE 82 TX2 80
96 95 RX2 93 RXC
87 TXC 90 RX3 88
TXC
87 88 TX3
84 TXC
96 RXC 93 RX2 95
RXC
79 82 80 TX2 SCTE
97 RXD 100 RX1 98
RXD
78 77 TX1 75 TXD
HDLC (L)
T4000 (DTE)
T4000 (DCE)
HDLC (R)
Options
DTE DCE Normal Echo Mode 3 Clocks 2 Clocks 1 Clock (X.21) No Loopback Loopback No Invert Invert
Input Pin Settings (Scenarios 9 & 10)
T4000 (DTE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC* T4000 (DCE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC*
Pin Number 39 42 65 22 67 68 66
State 0 1 1 1 1 1 1
Pin Number 39 42 65 22 67 68 66
State 1 1 1 1 1 1 1
Rev. 1.00
- 37 -
XRT4000
Scenario 12
78 TX1 77
75 TXD
TXD
97 98 RX1 100 RXD
82 SCTE TX2
79 80
96 95 RX2 93 RXC
87 TXC 90 RX3 88
TXC
87 84 88 TX3 TXC
96 RXC 93 RX2 95
RXC
79 82 80 TX2 SCTE
97 RXD 100 RX1 98
RXD
78 77 TX1 75 TXD
HDLC (L)
T4000 (DTE)
T4000 (DCE)
HDLC (R)
Options
DTE DCE Normal Echo Mode 3 Clocks 2 Clocks 1 Clock (X.21) No Loopback Loopback No Invert Invert
Input Pin Settings (Scenario 12)
T4000 (DTE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC* T4000 (DCE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC*
Pin Number 39 42 65 22 67 68 66
State 0 1 0 1 1 1 1
Pin Number 39 42 65 22 67 68 66
State 1 1 1 0 1 1 1
Rev. 1.00
- 38 -
XRT4000
Scenario 13
78 TXD 75 TX1 77
TXD
97 98 RX1 100 RXD
79 SCTE 82 TX2 80
96 95 RX2 93 RXC
87 TXC 90 RX3 88
TXC
87 88 TX3 84 TXC
96 RXC 93 RX2 95
RXC
79 80 TX2 82 SCTE
97 RXD 100 RX1 98
RXD
78 77 TX1 75 TXD
HDLC (L)
T4000 (DTE)
T4000 (DCE)
HDLC (R)
Options
DTE DCE Normal Echo Mode 3 Clocks 2 Clocks 1 Clock (X.21) No Loopback Loopback No Invert Invert
Input Pin Settings (Scenario 13)
T4000 (DTE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC* T4000 (DCE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC*
Pin Number 39 42 65 22 67 68 66
State 0 1 1 1 0 1 1
Pin Number 39 42 65 22 67 68 66
State 1 1 1 0 1 1 1
Rev. 1.00
- 39 -
XRT4000
Scenario 14
78 TXD 75 TX1 77
TXD
97 98 RX1 100 RXD
79 SCTE 82 TX2 80
96 95 RX2 93 RXC
87 TXC 90 RX3 88
TXC
87 88 TX3
84 TXC
96 RXC 93 RX2 95
RXC
79 80 TX2 82 SCTE
97 RXD 100 RX1 98
RXD
78 77 TX1 75 TXD
HDLC (L)
T4000 (DTE)
T4000 (DCE)
HDLC (R)
Options
DTE DCE Normal Echo Mode 3 Clocks 2 Clocks 1 Clock (X.21) No Loopback Loopback No Invert Invert
Input Pin Settings (Scenario 14)
T4000 (DTE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC* T4000 (DCE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC*
Pin Number 39 42 65 22 67 68 66
State 0 1 1 1 0 1 1
Pin Number 39 42 65 22 67 68 66
State 1 1 1 1 0 1 1
Rev. 1.00
- 40 -
XRT4000
Scenario 16
78 TX1 77
TXD
97 98 RX1 100 RXD
75 TXD
SCTE
82 TX2
79 80
96 95 RX2 93 RXC
87 TXC 90 RX3 88
TXC
87 88 TX3 84 TXC
96 RXC 93 RX2 95
RXC
79 82 80 TX2 SCTE
97 RXD 100 RX1 98
RXD
78 77 TX1 75 TXD
HDLC (L)
T4000 (DTE)
T4000 (DCE)
HDLC (R)
Options
DTE DCE Normal Echo Mode 3 Clocks 2 Clocks 1 Clock (X.21) No Loopback Loopback No Invert Invert
Input Pin Settings (Scenario 16)
T4000 (DTE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC* T4000 (DCE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC*
Pin Number 39 42 65 22 67 68 66
State 0 1 1 1 1 1 1
Pin Number 39 42 65 22 67 68 66
State 1 1 1 0 0 1 1
Rev. 1.00
- 41 -
XRT4000
Scenario 17 & 18
78 TX1 77
TXD
75 TXD
97 98 RX1 100 RXD
82 SCTE TX2
79 80
96 95 RX2 93 RXC
87 TXC 90 RX3 88
87 88 TX3 84 TXC
96 RXC 93 RX2 95
RXC
79 82 80 TX2 SCTE
97 RXD 100 RX1 98
RXD
78 77 TX1 75 TXD
HDLC (L)
T4000 (DTE)
T4000 (DCE)
HDLC (R)
Options
DTE DCE Normal Echo Mode 3 Clocks 2 Clocks 1 Clock (X.21) No Loopback Loopback No Invert Invert
Input Pin Settings (Scenario 17 & 18)
T4000 (DTE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC* T4000 (DCE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC*
Pin Number 39 42 65 22 67 68 66
State 0 1 X 1 1 1 1
Pin Number 39 42 65 22 67 68 66
State 1 1 X 1 1 1 1
Rev. 1.00
- 42 -
XRT4000
Scenario 20
78 TX1 77
75 TXD
TXD
97 98 RX1 100 RXD
82 SCTE TX2
79 80
96 95 RX2 93 RXC
87 TXC 90 RX3 88
87 84 88 TX3 TXC
96 RXC 93 RX2 95
RXC
79 82 80 TX2 SCTE
97 RXD 100 RX1 98
RXD
78 77 TX1 75 TXD
HDLC (L)
T4000 (DTE)
T4000 (DCE)
HDLC (R)
Options
DTE DCE Normal Echo Mode 3 Clocks 2 Clocks 1 Clock (X.21) No Loopback Loopback No Invert Invert
Input Pin Settings (Scenario 20)
T4000 (DTE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC* T4000 (DCE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC*
Pin Number 39 42 65 22 67 68 66
State 0 1 X 1 1 1 1
Pin Number 39 42 65 22 67 68 66
State 1 1 X 0 1 1 1
Rev. 1.00
- 43 -
XRT4000
Scenario 21
78 TXD 75 TX1 77
TXD
97 98 RX1 100 RXD
79 SCTE 82 TX2 80
96 95 RX2 93 RXC
87 TXC 90 RX3 88
87 88 TX3 84 TXC
96 RXC 93 RX2 95
RXC
79 80 TX2 82 SCTE
97 RXD 100 RX1 98
RXD
78 77 TX1 75 TXD
HDLC (L)
T4000 (DTE)
T4000 (DCE)
HDLC (R)
Options
DTE DCE Normal Echo Mode 3 Clocks 2 Clocks 1 Clock (X.21) No Loopback Loopback No Invert Invert
Input Pin Settings (Scenario 21)
T4000 (DTE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC* T4000 (DCE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC*
Pin Number 39 42 65 22 67 68 66
State 0 1 X 1 0 1 1
Pin Number 39 42 65 22 67 68 66
State 1 1 X 1 1 1 1
Rev. 1.00
- 44 -
XRT4000
Scenario 22
78 TXD 75 TX1 77
TXD
97 98 RX1 100 RXD
79 SCTE 82 TX2 80
96 95 RX2 93 RXC
87 TXC 90 RX3 88
87 88 TX3
84 TXC
96 RXC 93 RX2 95
RXC
79 80 TX2
82 SCTE
97 RXD 100 RX1 98
RXD
78 75 77 TX1 TXD
HDLC (L)
T4000 (DTE)
T4000 (DCE)
HDLC (R)
Options
DTE DCE Normal Echo Mode 3 Clocks 2 Clocks 1 Clock (X.21) No Loopback Loopback No Invert Invert
Input Pin Settings (Scenario 22)
T4000 (DTE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC* T4000 (DCE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC*
Pin Number 39 42 65 22 67 68 66
State 0 1 X 1 1 1 1
Pin Number 39 42 65 22 67 68 66
State 1 1 X 1 0 1 1
Rev. 1.00
- 45 -
XRT4000
Scenario 23
78 75 TXD TX1 77
TXD
97 98 RX1 100 RXD
79 82 SCTE TX2 80
96 95 RX2
93 RXC
87 TXC 90 RX3 88
87 88 TX3
84 TXC
96 RXC 93 RX2 95 97 RXD 100 RX1 98
RXC
79 80 TX2
82 SCTE
RXD
78 75 77 TX1 TXD
HDLC (L)
T4000 (DTE)
T4000 (DCE)
HDLC (R)
Options
DTE DCE Normal Echo Mode 3 Clocks 2 Clocks 1 Clock (X.21) No Loopback Loopback No Invert Invert
Input Pin Settings (Scenario 23)
T4000 (DTE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC* T4000 (DCE) Name DCE/DTE* EC* 2CK/3CK* LP* CKINV* DTINV* EN_OSC*
Pin Number 39 42 65 22 67 68 66
State 0 1 X 0 0 1 1
Pin Number 39 42 65 22 67 68 66
State 1 1 X 1 1 1 1
Rev. 1.00
- 46 -


▲Up To Search▲   

 
Price & Availability of XRT4000CV

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X